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Abstract

Proofs of mathematics theorems belong to the most difficult part of mathematics. For this
reason proofs are often omitted at schools. But without proofs there is no mathematics. Despite
this, proving or at least verification of statements should be done in teaching mathematics of all
school categories. It seems that new technologies such as CAS and DGS could help remedy this
state. In the last four decades new methods of proving, deriving and discovering theorems by
computers were invented. At the same time various dynamic geometry software was developed.

In this paper, basic methods of computer supported discovery and proving are shown. Both
DGS and CAS will be used. With DGS we describe a problem and verify some related conjec-
tures. With CAS we do rigorous proofs. The theory of automated geometry theorem proving is
demonstrated with examples.

1 Introduction
Problem solving belongs to one of main goals in teaching mathematics, to which computers yield
ideal possibilities. Let us look at Descartes’ view of proving.
R. Descartes’ general principle of problem solving [18], [25]:

- Reduce any kind of the problem to a mathematical problem,

- Reduce any kind of a mathematical problem to a problem of algebra,

- Reduce any problem of algebra to the solution of a single equation.

Descartes’ general principle is still valid. Most problems can really be translated into the system of
algebraic equations (usually non-linear) and then this system is solved by ingenious mathematical
algorithms with the help of computers.
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In the paper we will prove mathematical theorems using the theory of automated theorem proving
which is based on results of commutative algebra developed in the last forty years [7], [19]. These
proving methods would not be possible without powerful computers and appropriate mathematical
software. We will use both Dynamic Geometry Systems (DGS) and Computer Algebra Systems
(CAS). First we give a brief description about the role of DGS and CAS regarding proving theorems.

Dynamic geometry systems can be used in proving geometry theorems mainly due to following fea-
tures:

- Dynamic description of problems,

- Verification of statements,

- Stating conjectures,

- Visualization of proofs without words [13], [14].

Since DGS are based on numerical computations, in DGS mostly we are not able to prove theorems.
That is why we need CAS which are based on symbolic computations. In CAS we can use particu-
larly the following properties:

- Elimination of variables,

- Solving algebraic equations,

- Proving theorems,

- Discovering theorems.

Elimination of variables is a basic technique which enables both solving algebraic equations and prov-
ing and discovering theorems.
In teaching mathematics at various types of schools, we need both CAS and DGS. Whereas in DGS
we can demonstrate and verify theorems, in CAS, we are able to do exact proofs.

2 Proving theorems
We will be concerned with two proof categories which can be done by computer:

- Verification in DGS,

- Computer (automated) proofs.

Let us briefly characterize them.

Verification in DGS: In the past students verified a given statement in several concrete situations
using a ruler and circle. This is what we can call a classical verification.
Nowadays DGS enable to verify a statement in infinitely many situations. We call it a verification in
DGS. Since, the dragging function in DGS could be considered a continuous movement, if a statement
is valid by dragging all the possible free parameters, then it can be proved that the statement is actually
true with very high probability. This gives students confidence that the fact is indeed true and what
we need is a logical proof. We should realize that verification in DGS is not a proof! Despite of it
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verification is an important tool even for experts since we can state conjectures. In elementary schools
verification in DGS can replace the exact mathematical proof and motivate students.

Computer proof: By computer we can prove most of the problems which can be proved classically.
We can also prove problems which are difficult or even impossible to prove by a classical approach
(the first was Four colours problem which was solved in 1976).
New questions arise — is a computer proof a real proof? Are we able to check it?
By computer we can solve even such problems which we can not construct by ruler and circle (non–
Euclidean constructions).

Proving theorems does not belong to favorite activities at schools. To attract students we should keep
the following rules:

- Persuade students that proofs are necessary,

- Prove such statements we are doubting about,

- Show statements which seem to be true but in fact are not valid,

- Visualize a proof if possible,

- Show nice proofs,

- Use proofs without words [13], [14] — the best.

To show that we should not believe any statements which are not exactly proven let us look at the
following example.

Ancient Chinese prime number test:

Natural number n > 2 is prime⇔ n | (2n−1 − 1).

Let us verify it!
3 is prime ⇔ 3 | (23−1 − 1) true
4 is not prime ⇔ 4 - (24−1 − 1) true
5 is prime ⇔ 5 | (25−1 − 1) true
6 is not prime ⇔ 6 - (26−1 − 1) true
7 is prime ⇔ 7 | (27−1 − 1) true
8 is not prime ⇔ 8 - (28−1 − 1) true
9 is not prime ⇔ 9 - (29−1 − 1) true

· · ·
but the statement does not hold!!!
Namely, for n = 341 which is a compound number since 341 = 11 · 31, we get 341 | (2340 − 1) and
the statement is not true.
There are another such numbers 561, 645, 1105, 1387, 1729, . . . which are called 2-pseudoprimes.

3 Automated theorem proving
In this section we describe some computer proving methods which belong to the theory of automated
geometry theorem proving [7]. By this theory we can prove many theorems from geometry. This
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theory also enables to discover new theorems. Under discovering we mean searching for additional
conditions which are necessary to add to the given assumptions so that the statement becomes true.
Searching for geometric loci of points we put among the simplest form of discovering. Hundreds of
unknown theorems have been discovered in the last thirty years by this method.

There are three basic methods of automated geometry theorem proving:

- Gröbner basis (GB) method [2], [19],

- Wu–Ritt (WR) method [22],

- Quantifier elimination (QE) [21], [5].

In automated theorem proving we suppose that a statement is of the form

∀x ∈ C : H ⇒ C,

where H is a set of hypotheses

h1(x) = 0, h2(x) = 0, . . . , hr(x) = 0,

and C is a conclusion
c(x) = 0,

where C is the field of complex numbers and h1(x), h2(x), . . . , hr(x), c(x) are polynomials with
coefficients from the field of rational numbers Q.
To prove the statement above, we are to show that

ck(x) = c1(x)h1(x) + c2(x)h2(x) + · · ·+ cr(x)hr(x) (1)

— Gröbner basis approach [2], or

d(x)c(x) = c1(x)h1(x) + c2(x)h2(x) + ..+ cr(x)hr(x) (2)

— Wu–Ritt approach (hi(x) are in a triangular form) [22],

where k is a non-negative integer and c1(x), . . . , cr(x), d(x) are polynomials.
If a conclusion polynomial c can be expressed by (1) as

ck = c1h1 + c2h2 + · · ·+ crhr

then, since h1 = h2 = · · · = hr = 0, we get c = 0.
Similarly, if by (2)

dc = c1h1 + c2h2 + ...+ crhr

and d 6= 0, then from h1 = h2 = · · · = hr = 0 the conclusion c = 0 follows.

WR method was developed by Chinese mathematician Wu W.-t. before GB method which was de-
veloped by B. Buchberger. GB and WR methods are related exactly to the same class of geometric
theorems and they give equivalent results. The strength of WR method is that it is quicker by proving
a statement. The reason is that computation of a triangular set of given polynomials requires less
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effort than computing a Gröbner basis of the ideal generated by these polynomials. However Gröbner
bases contain more information about the given ideal.
WR packages are not publicly available in such an extent as GB packages. We can find them for
instance in Epsilon Library [23] and freely download at
http://www-calfor.lip6.fr/∼wang/epsilon/. On the other hand GB packages are im-
plemented in almost well known computer algebra systems including Maple, Mathematica, CoCoA,
Singular, Reduce, MuPAD, Axiom, Macsyma. Perhaps that is why GB method is used more fre-
quently than WR method.
The disadvantage of both GB and WR methods is that in the real case we cannot in general disprove
statements. The reason is that the theory of automated theorem proving which is behind GB and WR
methods is by Hilbert Nullstellensatz related to algebraic closed fields, for instance to the field of
complex numbers. But by proving geometric statements we usually work with real numbers. If we
prove such a statement, it is valid in the field of complex numbers, although we are working with
reals. But it could happen that a statement which is not valid in complex numbers is valid in real
numbers.

The reasoning is usually not so simple. We often need to rule out degeneracy conditions, like e.g. two
vertices of a triangle coincide, the radius of a circle equals zero, etc.
Their algebraic expression is in the form of inequations

d1(x) 6= 0, d2(x) 6= 0, . . . , ds(x) 6= 0.

Then algebraic form of a statement has the form

∀x ∈ C : [(h1 = 0, . . . , hr = 0, d1 6= 0, . . . , ds 6= 0)⇒ (c = 0)].

Searching for degeneracy conditions and their geometric interpretation is a difficult problem which
has not been completely solved to date.

Quantifier Elimination by Cylindrical Algebraic decomposition (CAD) [5] is, unlike GB and WR
methods, working in real space. At the beginning there was a discovery of a Polish mathematician
and logician A. Tarski that the theory (R,+, . . . , 0, 1, <) is complete. It implies that in a so called
elementary theory of real closed fields it is possible to carry out the elimination of quantifiers. Collins
CAD approach is based on a decomposition of a parametric space into cells. Due to the fact that
we are working with real numbers we can solve even inequalities by this method. There are several
programs using cell-decomposition, for instance QEPCAD [6], REDLOG [8], Bottema [26]. CAD
method is also implemented in the program Mathematica. The weakness of CAD method is that the
computational complexity increases very quickly with the number of parameters. Its use is limited to
date.

4 Examples
In this part we demonstrate various computer methods of proving and discovering with examples. For
more examples see [16].
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4.1 Simson–Wallace theorem
For demonstrating computer supported theory proving, we consider the well-known Simson–Wallace
theorem as our first example.

Let ABC be a triangle and P a point of the circumcircle of ABC. Then the feet of perpendiculars
K,L,M from P onto the sides of ABC lie on a straight line.

Verification in DGS: Working with students, first we verify the statement in DGS, where the verifi-

Figure 1: Simson–Wallace theorem

cation is done in Cabri II Plus or in Geogebra.
Consider a straight line KL and ask whether the point M is a member of the line KL, Fig. 1. The
answer is This point lies on the object even if we interactively change the form of a triangle ABC.
Hence the statement is confirmed in infinitely many cases. But we did not show that the statement is
true in all cases (perhaps with some exceptions). We should realize that verification is not a proof.

After verification we usually prove the theorem classically since the classical proof enables a deeper
insight into the problem.1 We will omit it, see [16], so that we could concentrate on computer proof.

Computer proof (GB approach): Let us choose a Cartesian system of coordinates so that A = [a, 0],
B = [b, c], C = [0, 0], P = [p, q], K = [k1, k2], L = [l1, 0], M = [m1,m2], Fig. 1.
The hypotheses are as follows:

PL ⊥ AC ⇔ h1 : p− l1 = 0,
K ∈ BC ⇔ h2 : ck1 − bk2 = 0,
PK ⊥ BC ⇔ h3 : (p− k1)b+ (q − k2)c = 0,
M ∈ AB ⇔ h4 : ac+ bm2 − cm1 − am2 = 0,
PM ⊥ AB ⇔ h5 : (p−m1)(b− a) + (q −m2)c = 0,

1Classical proof of the Simson–Wallace theorem can be generated automatically as well, see e.g. [4].
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P lies on the circumcircle of ABC ⇔
h6 : −acp+ cp2 + abq − b2q − c2q + cq2 = 0,

see [16]. The conclusion c has the form:

K,L,M are collinear⇔ c : l1m2 + k2m1 − k1m2 − k2l1 = 0.

We need to find out whether the conclusion polynomial c can be expressed in the form (1) which is
equivalent to the fact that c belongs to the radical of the ideal (h1, h2, . . . , h6), or equivalently, whether
1 is an element of the ideal I = (h1, h2, . . . , h6, ct − 1), where t is a slack variable [10]. Program
CoCoA 2 returns

Use R::=Q[abcpqk[1..2]l[1..2]m[1..2]t];
I:=Ideal(p-l[1],ck[1]-bk[2],(p-k[1])b+(q-k[2])c,ac+bm[2]-cm[1]
-am[2],(p-m[1])(b-a)+(q-m[2])c,-acp+cpˆ2+abq-bˆ2q-cˆ2q+cqˆ2,
(l[1]m[2]+k[2]m[1]-k[1]m[2]-k[2]l[1])t-1); NF(1,I);

the answer 1 and the statement is not generally true.
Let us look for non-degeneracy conditions. Elimination of dependent variables p, q, k1, k2, l1,m1,m2

and t in the ideal I

Use R::=Q[abcpqk[1..2]l[1..2]m[1..2]t];
I:=Ideal(p-l[1],ck[1]-bk[2],(p-k[1])b+(q-k[2])c,ac+bm[2]-cm[1]
-am[2],(p-m[1])(b-a)+(q-m[2])c,-acp+cpˆ2+abq-bˆ2q-cˆ2q+cqˆ2,
(l[1]m[2]+k[2]m[1]-k[1]m[2]-k[2]l[1])t-1); Elim(p..t,I);

gives the condition (b2+c2)((a−b)2+c2) = 0, which means that for the vertices of a triangle B = C
or A = B. We rule out these cases assuming that B 6= C and B 6= A. We will add the polynomial
(b2 + c2)((a− b)2 + c2)v− 1, where v is another slack variable, to the ideal I and the procedure now
repeats. Denoting J = I ∪ {(b2 + c2)((a− b)2 + c2)v − 1} we get

Use R::=Q[abcpqk[1..2]l[1..2]m[1..2]vt];
J:=Ideal(p-l[1],ck[1]-bk[2],(p-k[1])b+(q-k[2])c,ac+bm[2]-cm[1]
-am[2],(p-m[1])(b-a)+(q-m[2])c,-acp+cpˆ2+abq-bˆ2q-cˆ2q+cqˆ2,
(bˆ2+cˆ2)((a-b)ˆ2+cˆ2)v-1,(l[1]m[2]+k[2]m[1]-k[1]m[2]-k[2]l[1])
t-1); NF(1,J);

the answer NF=0 which means that the conclusion polynomial c is in the form (1). The Simson–
Wallace theorem is proved.

Now let us show Wu–Ritt approach on the same example.

Computer proof (WR approach): With the same notation as above we enter in Epsilon 3 (which is
working under Maple)

with(epsilon);
> Simson:=Theorem({p-l[1],c*k[1]-b*k[2],(p-k[1])*b+(q-k[2])*c,

2program CoCoA is freely distributed at http://cocoa.dima.unige.it
3program Epsilon is freely distributed at http://www-calfor.lip6.fr/∼wang/epsilon/
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a*c+b*m[2]-c*m[1]-a*m[2],(p-m[1])*(b-a)+(q-m[2])*c,-a*c*p+c*pˆ2
+a*b*q-bˆ2*q-cˆ2*q+c*qˆ2},{l[1]*m[2]+k[2]*m[1]-k[1]*m[2]-k[2]*l[1]},
[a,b,c,p,q,k[1],k[2],l[1],l[2],m[1],m[2]]): Prove(Simson);

with the answer The theorem is true under the following subsidiary conditions:

b 6= 0, (3)
b2 − 2ba+ a2 + c2 6= 0, (4)

c 6= 0, (5)
−b+ a 6= 0, (6)
b2 + c2 6= 0. (7)

Comparison with GB approach shows that now we have three more conditions (3), (5) and (6),
whereas conditions (4) and (7) are the same. When the theorem is true in degenerate cases we can
verify using the same method. We find out that instead of five conditions it suffices to have two
conditions (4), (7) to confirm the GB result.

4.1.1 Generalization of Gergonne

In this part we will show a generalization of Simson–Wallace theorem which is ascribed to J. D.
Gergonne [3]. To formulate it, we will use discovery approach by computer. We will solve the
following problem:

Let K,L,M be the feet of perpendiculars dropped from a point P to the sides BC,CA,AB of a
triangle ABC respectively. We look for points P such that a triangle KLM has the fixed area s.

This problem is a generalization of the previous one since for zero area s of KLM , that is, for the
points K,L,M being collinear, the locus of points P is the circumcircle of ABC.

Solution (discovery): To solve the problem we use the same notation as in the last problem. Adopt
a Cartesian coordinate system so that A = [a, 0], B = [b, c], C = [0, 0], P = [p, q], K = [k1, k2],
L = [l1, 0], M = [m1,m2], Fig. 1. Suppose that the hypotheses h1, h2, . . . , h5, which are the same as
in the previous case, hold.

For the area s of a triangle KLM we have

area of KLM = s⇔ h7 : l1m2 + k2m1 − k1m2 − k2l1 − 2s = 0,

since

s =
1

2

∣∣∣∣∣∣
k1 k2 1
l1 0 1
m1 m2 1

∣∣∣∣∣∣ . (8)

Now the problem is more complex. Unlike the previous task we do not know the locus of points P
— we have to discover it. Consider the ideal I which contains polynomials h1, h2, . . . , h5 and the
condition h7 of fixed area. In this ideal we eliminate all variables besides a, b, c, p, q, s. We get

Use R::=Q[abcpqk[1..2]l[1..2]m[1..2]s];
I:=Ideal(p-l[1],ck[1]-bk[2],(p-k[1])b+(q-k[2])c,ac+bm[2]-cm[1]
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Figure 2: Generalization of Gergonne — triangle KLM has the fixed area

-am[2],(p-m[1])(b-a)+(q-m[2])c,l[1]m[2]+k[2]m[1]-k[1]m[2]-k[2]
l[1]-2s); Elim(k[1]..m[2],I);

the equation of the circle centered at O = [q/2, (b2 − ab+ c2)/(2c)] and radius

r =
√

(b2 + c2)((a− b)2 + c2)(ac+ 8s)/(4ac3) (9)

which is concentric with the circumcircle of ABC, Fig. 2.
We found that the condition for the triangle KLM having fixed area s is, that a point P lies on the
circle. Similarly we prove a converse statement. We can state the following Gergonne’s generalization
of Simson–Wallace theorem:

The feet of perpendiculars from a point P onto the sides of a triangle ABC form a triangle of the
constant area iff P lies on a circle which is concentric with the circumcircle of ABC.

4.1.2 Simson–Wallace generalization on a tetrahedron

In the following part we will show a generalization of Simson–Wallace theorem into space which has
been done by computer.

Let K,L,M,N be the feet of perpendiculars dropped from a point P onto the faces BCD, ACD,
ABD, ABC of a tetrahedron ABCD. What is a locus of points P such that the volume of KLMN
equals the constant s?

Solution (discovery): Choose a Cartesian system of coordinates so that A = [0, 0, 0], B = [a, 0, 0],
C = [b, c, 0], D = [d, e, f ], K = [k1, k2, k3], L = [l1, l2, l3], M = [m1,m2,m3], N = [n1, n2, n3],
P = [p, q, r]. Using elimination, in a similar way as in the previous Gergonne’s generalization, we
get the cubic equation

F (s) := ac2f 3G+ s ·Q = 0,
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Figure 3: Cubic surface which is associated with a tetrahedron with s = 0.

where

G = bf 2q3(b−a)+fr3(abe−acd+cd2−b2e−c2e+ce2)+c2f 2p2q+cfp2r(e2−ce+f 2)+cf 2q2p(a−
2b)+fq2r(abe−acd+cd2−b2e+cf 2)+cf 2r2p(a−2d)+f 2r2q(b2−ab+c2−2ce)+2cefpqr(b−d)+
abcf 2q2+r2(abce2−ac2de+c2d2e+acde2−2bcde2−abe3+b2e3+acdf 2−abef 2+b2ef 2+c2ef 2)−
ac2f 2pq+acfpr(ce−e2−f 2)+fqr(ac2d−2abce−c2d2+2bcde−b2e2+abe2+abf 2−b2f 2−c2f 2)

and

Q = −6(e2+ f 2)((cd− be)2+ b2f 2+ c2f 2)(a2c2− 2ac2d+ c2d2− 2a2ce+2abce+2acde− 2bcde+
a2e2 − 2abe2 + b2e2 + a2f 2 − 2abf 2 + b2f 2 + c2f 2).

We can state a generalization of Simson–Wallace theorem in space [16]:

Let KLMN be orthogonal projections of an arbitrary point P consecutively on the faces BCD,
ACD, ABD, ABC of a tetrahedron ABCD. Then the points P such that the tetrahedron KLMN
has constant volume s belong to the surface F (s) = 0.

For s = 0, i.e., if K,L,M,N are complanar, and a = 1, b = 0, c = 1, d = 0, e = 0, f = 1, we get a
cubic surface, Fig. 3

p2q + pq2 + p2r + q2r + pr2 + qr2 − pq − pr − qr = 0.

This surface has many interesting properties, see [16].

Next figure shows a cubic surface associated with a regular tetrahedron for s = 10
√
2/729, Fig. 4.

The surface has the equation

6
√
6x2y + 6

√
3x2z − 2

√
6y3 + 6

√
3y2z − 4

√
3z3 + 9

√
2x2 + 9

√
2y2 + 9

√
2z2 − 7

√
2 = 0 .
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Figure 4: Cubic surface associated with a regular tetrahedron with s 6= 0.

4.2 Pascal theorem
WR method is quicker than GB method by proving theorems from elementary geometry. Let us
demonstrate it on the following example which is known as the theorem of Pascal:

Let ABCDEF be a cyclic hexagon and let X = AB ∩DE, Y = BC ∩ EF, Z = CD ∩ FA be the
intersections of opposite sides of a hexagon. Then X, Y, Z are collinear.

Verification in DGS: First we draw the Fig. 5 in DGS and ask whether the point Z lies on the line
XY. The answer is This point lies on the object.

Computer proof (WR method): Denote the coordinates of the vertices of a hexagon as A = [0, 0],
B = [b1, b2], C = [c1, c2], D = [d1, d2], E = [e1, e2], F = [f1, f2] and let the circumcenter S = [r, 0],
where r is the radius, Fig. 5. First we express conditions for vertices B,C,D,E, F being on the
circle:

|BS| = r ⇔ h1 : (b1 − r)2 + b22 − r2 = 0,

|CS| = r ⇔ h2 : (c1 − r)2 + c22 − r2 = 0,

|DS| = r ⇔ h3 : (d1 − r)2 + d22 − r2 = 0,

|ES| = r ⇔ h4 : (e1 − r)2 + e22 − r2 = 0,

|FS| = r ⇔ h5 : (f1 − r)2 + f 2
2 − r2 = 0.

Further we describe points X, Y, Z:

X ∈ AB ⇔ h6 : x1b2 − x2b1 = 0,
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SA

B

C D

E

F

X

Y

Z

This point lies on the object

Figure 5: Pascal theorem—points X,X,Z are collinear

X ∈ DE ⇔ h7 : x1d1 + d1e2 + x2e1 − d2e1 − x1e2 − x2d1 = 0,

Y ∈ BC ⇔ h8 : y1e2 + e1f2 + y2f1 − e2f1 − y1f2 − y2e1 = 0,

Y ∈ EF ⇔ h9 : y1b2 + b1c2 + y2c1 − b2c1 − y1c2 − y2b1 = 0,

Z ∈ CD ⇔ h10 : z2f1 − z1f2 = 0,

Z ∈ FA⇔ h11 : z1c2 + c1d2 + z2d1 − c2d1 − z1d2 − z2c1 = 0.

The conclusion polynomial c has the form

X, Y, Z are collinear⇔ c : x1y2 + y1z2 + x2z1 − y2z1 − x1z2 − x2y1 = 0.

In Epsilon we enter

with(epsilon);
Pascal:=Theorem({(b[1]-r)ˆ2+b[2]ˆ2-rˆ2,(c[1]-r)ˆ2+c[2]ˆ2-rˆ2,
(d[1]-r)ˆ2+d[2]ˆ2-rˆ2,(e[1]-r)ˆ2+e[2]ˆ2-rˆ2,(f[1]-r)ˆ2+f[2]ˆ2-rˆ2,
x[1]*b[2]-x[2]*b[1],x[1]*d[2]+d[1]*e[2]+x[2]*e[1]-d[2]*e[1]-x[1]*
e[2]-x[2]*d[1],y[1]*e[2]+e[1]*f[2]+y[2]*f[1]-e[2]*f[1]-y[1]*f[2]-
y[2]*e[1],y[1]*b[2]+b[1]*c[2]+y[2]*c[1]-b[2]*c[1]-y[1]*c[2]-y[2]*
b[1],z[2]*f[1]-z[1]*f[2],z[1]*c[2]+c[1]*d[2]+z[2]*d[1]-c[2]*d[1]-
z[1]*d[2]-z[2]*c[1]},{x[1]*y[2]+y[1]*z[2]+x[2]*z[1]-y[2]*z[1]-x[1]

*z[2]-x[2]*y[1]},
[b[1],b[2],c[1],c[2],d[1],d[2],e[1],e[2],f[1],f[2],x[1],x[2],
y[1],y[2],z[1],z[2],r]): Prove(Pascal);

and in 0.1 second get The theorem is true under the following subsidiary conditions:

b1d2 − b1e2 + b2e1 − b2d1 6= 0,

−c1e2 + c1f2 + b1e2 − b1f2 + b2f1 − b2e1 − c2f1 + c2e1 6= 0.
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−f2d1 + c1f2 − c2f1 + f1d2 6= 0,

b1 6= 0, −c1 + b1 6= 0, −d1 + c1 6= 0.

The first condition is equivalent to ∣∣∣∣ b1, b2
d1 − e1, d2 − e2

∣∣∣∣ 6= 0 (10)

which means that AB ∦ DE. Similarly, next two conditions give BC ∦ EF and CD ∦ FA. The con-
dition b1 6= 0 follows from h1 = 0 and (10). Remaining two conditions −c1 + b1 6= 0, −d1 + c1 6= 0
are also redundant as we can directly verify by the same method.

The use of GB approach on the Pascal theorem fails. The major problem is searching for subsidiary
(non-degeneracy) conditions. If we add the first three non-degeneracy conditions above to the hy-
potheses ideal, then we obtain NF=0 in 4.2 seconds.

4.3 Neuberg–Pedoe inequality
Although both GB and WR methods are working with equality-type statements we are able to use
them to prove statements containing inequalities as well. Let us see the following inequality (11)
which is known as the Neuberg–Pedoe inequality [12].

Given a triangle ABC with side lengths a, b, c and the area P and a triangle KLM with side lengths
k, l,m and the area Q. Prove that then

k2(−a2 + b2 + c2) + l2(a2 − b2 + c2) +m2(a2 + b2 − c2) ≥ 16 PQ. (11)

When the equality is attained?

Computer proof (GB approach): Let A = [x, y], B = [0, 0], C = [a, 0], K = [u, v], L = [0, 0],
M = [k, 0], Fig 6. We express the side lengths a, b, c, k, l,m and areas P,Q in algebraic equations:

Figure 6: Neuberg-Pedoe inequality - computer proof
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b = |CA| ⇔ h1 : (x− a)2 + y2 − b2 = 0,

c = |AB| ⇔ h2 : x
2 + y2 − c2 = 0,

l = |MK| ⇔ h3 : (u− k)2 + v2 − l2 = 0,

m = |KL| ⇔ h4 : u
2 + v2 −m2 = 0,

P = area ABC ⇔ h5 : 2P − ay = 0,

Q = area KLM ⇔ h6 : 2Q− kv = 0.

Denote the difference of the left side minus the right side of (11) by t. Then

h7 : k
2(−a2 + b2 + c2) + l2(a2 − b2 + c2) +m2(a2 + b2 − c2)− 16PQ− t = 0.

We are to show that t ≥ 0. We will execute two basic steps:

1) We express the variable t in terms of independent variables x, y, a, u, v, k in the ideal I = (h1, h2,
. . . , h7).

2) We write t in such a form from which its non-negativity follows.

In the ideal I = (h1, h2, . . . , h7) we eliminate dependent variables b, c, l,m, p, q. In CoCoA we get

Use R::=Q[xyuvakbclmpqt]; I:=Ideal((x-a)ˆ2+yˆ2-bˆ2,xˆ2+yˆ2-cˆ2,
(u-k)ˆ2+vˆ2-lˆ2,uˆ2+vˆ2-mˆ2,2p-ay,2q-kv,
kˆ2(-aˆ2+bˆ2+cˆ2)+lˆ2(aˆ2-bˆ2+cˆ2)+ mˆ2(aˆ2+bˆ2-cˆ2)-16pq-t);
Elim(b..q,I);

the polynomial which leads to the equation

t = 2u2a2 + 2v2a2 − 4xuak − 4yvak + 2x2k2 + 2y2k2

which is equivalent to
t = 2(xk − ua)2 + 2(yk − va)2.

We expressed the left side t of Neuberg–Pedoe inequality as the sum of squares, hence t ≥ 0. The
inequality (11) is proved.
The equality is attained iff xk − ua = 0 and yk − va = 0, which means that triangles ABC and
KLM are similar.

Remark 1:
1) We expressed t as the sum of squares of polynomials by hand — without computer.

2) Expression of a non-negative polynomial as the sum of squares is difficult. In addition in some
cases a non-negative polynomial cannot be expressed as the sum of polynomials [20].

3) This issue is connected with the 17th Hilbert problem which was presented at the International
Congress of Mathematicians in Paris in 1900 [20].

Now we will prove the Neuberg–Pedoe inequality (11) using quantifier elimination by cell-decompo-
sition method — the method which is based on the Collins CAD. We will use the program Bottema,
which was developed by Chinese mathematician Lu Yang [26]. By the program Bottema we are able
to prove inequality-type theorems whose hypotheses and thesis are inequalities in rational functions or
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radicals. The program is especially efficient for geometric inequalities in a triangle. After a translation
of a geometric inequality into a required algebraic form the program proves the inequality on the basis
of quantifier elimination based on decomposition of the parametric space into finite number of cells.
Choosing a test point in every cell, we only need to check the inequality in these test points. If the
inequality holds we obtain the answer inequality holds; otherwise we get The inequality does not hold
with a counter-example. The program Bottema is working under Maple.

Computer proof (QE approach): To prove (11) by the program Bottema we translate the inequality
using the relations h1, h2, . . . , h6. Typing

read‘bottema‘;
yprove(kˆ2*(-aˆ2+(x-a)ˆ2+yˆ2+xˆ2+yˆ2)+((u-k)ˆ2+vˆ2)*(aˆ2-(x-a)ˆ2
-yˆ2+xˆ2+yˆ2)+(uˆ2+vˆ2)*(aˆ2+(x-a)ˆ2+yˆ2-xˆ2-yˆ2)-4*a*y*k*v>=0);

we obtain the answer The inequality holds.
We do not get any information when the equality is attained.

Remark 2:
If KLM is equilateral then k2 = 4Q/

√
3 and (11) transforms into the form (Weitzenböck inequality

[24])
a2 + b2 + c2 ≥ 4

√
3 P,

where equality occurs iff the triangle is equilateral.

It is equivalent to
a2
√
3

4
+

b2
√
3

4
+

c2
√
3

4
≥ 3 P.

In the Fig. 7 we can see a graphical demonstration of Weitzenböck inequality, in the style of proofs
without words [1], [13], [14].

4.4 Non-elementary constructions
The following example represents a non-elementary construction which is solved both in a computer
way and classically.

Given four lines a, b, c, d in the plane, construct a square KLMN such that K ∈ a, L ∈ b, M ∈ c,
N ∈ d.

Solution by computer: Let us choose a Cartesian coordinate system so that the vertices K,L,M,N
of a square have coordinates K = [k1, k2], L = [l1, l2], M = [m1,m2], N = [n1, n2], Fig 8, and

a : a1x+ a2y + a3 = 0, b : b1x+ b2y + b3 = 0, c : c1x+ c2y + c3 = 0, d : d1x+ d2y + d3 = 0.

Then

K ∈ a⇔ h1 : a1k1 + a2k2 + a3 = 0,

L ∈ b⇔ h2 : b1l1 + b2l2 + b3 = 0,

M ∈ c⇔ h3 : c1m1 + c2m2 + c3 = 0,

N ∈ d⇔ h4 : d1n1 + d2n2 + d3 = 0.
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Figure 7: Graphical proof of Weitzenböck inequality

To ensure that KLMN is a square, first we rotate vectors L −K, K − N by 90◦ in a positive sense
to get vectors N −K, M −N respectively. Then

h5 : −(l2 − k2)− (n1 − k1) = 0,

h6 : l1 − k1 − (n2 − k2) = 0,

h7 : −(k2 − n2)− (m1 − n1) = 0,

h8 : k1 − n1 − (m2 − n2) = 0,

We get the system of 8 linear equations h1 = 0, h2 = 0, . . . , h8 = 0 with 8 unknowns k1, k2, l1, l2,
m1, m2, n1, n2. There is no loss of generality if we put a1 = 0, a2 = 1, a3 = 0, c3 = 0.

In the ideal I = (h1, h2, . . . , h8) we eliminate dependent variables k2, . . . , n2 and get

k1 = (−b3c1d1 − b3c2d1 + b3c1d2 − b3c2d2 − b1c1d3 − b2c1d3 + b1c2d3 − b2c2d3)/(b1c1d1 + b2c1d1 +
b2c2d1 − b1c1d2 − b2c1d2 + b1c2d2).

Similarly we find the remaining unknowns.4 Now we can draw the resulting square in DGS. Notice
that the square KLMN is positively oriented.
Rotation of vectors L−K, K −N by 90◦ in a negative sense leads to the second solution.

Classical solution: The solution is based on one theorem from equiform kinematics [11]. It says
that if three points have straight trajectories in an equiform motion, then all points have straight

4We could also solve the system h1 = 0, h2 = 0, . . . , h8 = 0 by the Cramer’s rule. Then k1 is expressed as the
quotient of two determinants which is in accordance with above result.
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a

c

d b

K

L

M

N

Figure 8: Square KLMN with vertices on lines a, b, c, d - computer proof

trajectories.
By this theorem it suffices to construct two arbitrary squares X ′, Y ′, U ′, V ′ and X ′′, Y ′′, U ′′, V ′′ with
only three vertices X ′, Y ′, U ′ and X ′′, Y ′′, U ′′ on given lines a, b, c. Then the remaining vertices V ′, V ′′

determine the line p which is a trajectory of a vertex N, Fig. 9.

5 Conclusion
Proving techniques mentioned above are taught at the University of South Bohemia at initial teacher
training in the subject Geometric seminar. Some parts are also taught at in-service teacher training.
This seminar is obligatory, offered at the 4th year of study, two hours a week, 3 credits, in English.
Seminar work is required.
After a discussion students solve a given problem (mostly from http://www.cut-the-knot.org/geometry.shtml).
Seminar work consists of the following items:

- Introduction into the problem,

- Description of a problem in DGS (Cabri, Geogebra,...),

- Verification in DGS,

- Classical proof,

- Automated (computer) proof.

Similar computer techniques could be also used in another areas of mathematics especially in analy-
sis. There are powerful methods for searching limits of rational functions ”just from the definition of
a limit” [9] or indefinite integrals. We have efficient methods for summing series’ [17], we can factor
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d b
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Figure 9: Square KLMN with vertices on lines a, b, c, d - classical solution

polynomials, there is a sos method for decomposition of polynomials into the sum of squares, though
its use is limited by the number of parameters [15], etc.
We should realize that behind these methods efficient algorithms of computer algebra are hidden. It is
a question, how these methods could be introduced into initial teacher training including understand-
ing of main principles of given algorithms.

Acknowledgements: The author wishes to thank the referees for their valuable suggestions.
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[2] Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Multidi-
mensional Systems Theory (Bose, N.– K., ed.), pp. 184–232. Reidel, Dordrecht (1985).

[3] Chou, S. C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dor-
drecht 1987.

[4] Chou, S. C., Gao, X. S., Zhang, J. Z.: A Deductive Database Approach to Automated Geometry
Theorem Proving and Discovering. J. Automated Reasoning 25/(3) (2000), 219–246

[5] Collins, G. E.: Quantifier elimination for the elementary theory of real closed fields by cylin-
drical algebraic decomposition. Lecture Notes In Computer Science, vol. 33, pp. 134–183.
Springer-Verlag, Berlin (1975).

[6] Collins, G. E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination.
J. Symbolic Computation 12 (1991), 299–328.

126



The Electronic Journal of Mathematics and Technology, Volume 5, Number 2, ISSN 1933-2823

[7] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Second Edition, Springer
1997.

[8] Dolzman, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM
Bulletin, 31/(2) (1997), 2–9.

[9] Hora, J., Pech, P.: On One Unusual Method of Computation of Limits of Rational Functions
in the Program Mathematica. Int. Journal of Technology in Mathematics Education 12 (2005),
161–164 .

[10] Kapur, D.: A Refutational Approach to Geometry Theorem Proving. Artificial Intelligence Jour-
nal 37 (1988), 61–93.

[11] Karger, A.: Classical Geometry and Computers. Journal for Geometry and Graphics 2 (1998)
7–15.

[12] Mitrinovic, D. S., Pecaric, J. E., Volenec, V.: Recent Advances in Geometric Inequalities.
Kluwer Acad. Publ., Dordrecht, Boston, London 1989.

[13] Nelsen, R.: Proofs Without Words. MAA 1993.

[14] Nelsen, R.: Proofs Without Words II. MAA 2000.

[15] Parrilo, P. A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Ro-
bustness and Optimization. PhD. thesis. California Institute of Technology, Pasadena, California
(2000).

[16] Pech, P.: Selected Topics in Geometry with Classical vs. Computer Proving. World Scientific,
Singapore 2007.
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